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Abstract

In this paper, the non-linear dynamics of a two-degree-of-freedom vibration system with non-linear
damping and non-linear spring is studied. The analytic results show that the purposes of reducing
amplitude and oscillation can be realized by adjusting properly the system parameters and considering the
value of exciting frequency. The conclusions can provide some available evidences for the design and
improvement of the non-linear absorber. Numerical simulations show the system exhibits periodic motions,
quasiperiodic motions and chaotic motions.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the domain of mechanical vibration research, dynamic absorbers have extensive application
in reducing vibrations of machinery. Whiston [1] studied the non-linear response of a one-
dimensional oscillator system excited by harmonic excitation. Natsiavas [2] discussed the steady
state response for a class of strongly non-linear multiple-degree-of-freedom oscillators, where the
vibration absorber is modelled as a mass with linear damping and restoring force. Vakakis and
Paipetic [3] investigated the effect of a viscously damped dynamic absorber on an undamped
multi-degree-of-freedom vibrating system. Many researchers have also used the non-linear
absorbers. Soom [4] and Jordanov [5] studied the optimal parameter design of linear and non-
linear dynamic vibration absorbers for damped primary systems. They examined optimization
criteria other than the traditional one and obtained small improvements in steady state response
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by using non-linear springs. However, the presence of the non-linearities introduces dangerous
instabilities, which in some cases may result in amplification rather than reduction of the vibration
amplitudes [6,7]. Natsiavas [8] applied the method of averaging to investigate the steady
state oscillations and stability of non-linear dynamic vibration absorbers. He pointed out that
proper selection of the system parameters would result in substantial improvements of non-linear
absorbers and avoid dangerous effects that are likely to occur due to the presence of the
non-linearities. Oueini et al. [9,10] exploited the saturation phenomenon in devising an active
vibration suppression technique. They introduced a second order absorber and coupled it
with the plant through a user-defined quadratic and cubic feedback control law. All the above
studies which are based on the absorber are composed of linear damper, linear or non-linear
spring and mass, not considering the effect of the non-linear damper. The present investigation is
to study the non-linear dynamic behaviour of a two-degree-of-freedom vibration system with non-
linear damping and non-linear spring. And by numerical integration, periodic motions,
quasiperiodic motions and chaotic motions of the system are discussed by tracing the bifurcation
diagram.

2. Basic equations

A model of a two-degree-of-freedom oscillator under consideration is shown in Fig. 1. The
co-ordinate x1 represents the displacement of the main mass m1 with respect to its
foundation, while x2 stands for the relative displacement of the absorber mass m2 with respect
to the mass m1: The absorber is excited by a harmonic force p and p ¼ p0 cosot; where o is the
external exciting frequency. The system is attached by means of non-linear springs and non-linear
dampers. Then, the non-linear spring restoring forces and damping forces can be expressed
through

fiðxiÞ ¼ kixi þ k0
ix

3
i ; i ¼ 1; 2;

RiðxiÞ ¼ ci ’xi þ c0ix
2
i ’xi; i ¼ 1; 2: ð1Þ
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Fig. 1. Basic model.
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By the principle of D’Alembert, the governing equations of motion for the system are

ðm1 þ m2Þ .x1 þ m2 .x2 þ f1ðx1Þ þ R1ðx1; ’x1Þ ¼ �p0 cosot;

m2 .x1 þ m2 .x2 þ f2ðx1Þ þ R2ðx2; ’x2Þ ¼ �p0 cosot: ð2Þ

Suppose that xc ¼ p0=k1 and introduce the following dimensionless parameters:

t ¼ ot; m ¼ m2=m1; %o2
i ¼ ki=mi; oi ¼ %oi=o; Zi ¼ o2

i ; zi ¼ ci=2
ffiffiffiffiffiffiffiffiffi
kimi

p
;

xi ¼ 2zioi; yi ¼ xi=xc; d ¼ o2=o1; O ¼ o= %o1; %ai ¼ k0
ix

2
c=ki; ai ¼ %aio2

i ;

%bi ¼ c0ix
2
c=

ffiffiffiffiffiffiffiffiffi
kimi

p
; bi ¼ %bioi; %l ¼ p0=m1 %o2

1xc; l ¼ %lo2
1;

where oi is the non-dimensional frequency and %oi ði ¼ 1; 2Þ are the natural frequencies of the
main mass and the absorber, respectively. Now the dimensionless governing equations of motion
of the system are obtained and can be written as

ð1þ mÞ .y1 þ m .y2 þ x1 ’y1 þ b1y
2
1 ’y1 þ o2

1y1 þ a1y3
1 ¼ �l cos t;

m .y1 þ m .y2 þ mx2 ’y2 þ mb2y
2
2 ’y2 þ mo2

2y1 þ ma2y32 ¼ �l cos t: ð3Þ

The above formula can be put in matrix form:

½M�½ .y� þ ½C�½ ’y� þ ½K �½y� ¼ ½f �; ð4Þ

where

½y� ¼
y1

y2

" #
; ½M� ¼

1þ m m

m m

" #
; ½C� ¼

x1 0

0 mx2

" #
;

½K � ¼
Z1 0

0 mZ2

" #
; ½f � ¼

�l cos t� b1y
2
1 ’y1 � a1y31

�l cos t� mb2y
2
2 ’y2 � ma2y3

2

" #
:

Applying the method of averaging, the steady state responses are assumed as

yðtÞ ¼ uðtÞcos tþ vðtÞsin t;

’yðtÞ ¼ �uðtÞsin tþ vðtÞcos t; ð5Þ

where uðtÞ ¼ ½u1ðtÞ; u2ðtÞ�T; vðtÞ ¼ ½v1ðtÞ; v2ðtÞ�T are assumed to be slow functions about the time t:
Differentiating the first formula of Eq. (5) with respect to the time t; we obtain

’yðtÞ ¼ ’uðtÞcos t� uðtÞsin tþ ’vðtÞsin tþ vðtÞcos t: ð6Þ

Substituting the second formula in Eq. (5) into Eq. (6), the resulting equation is

’uðtÞcos tþ ’vðtÞsin t ¼ 0: ð7Þ

Also differentiating the second formula of Eq. (5), we obtain

.yðtÞ ¼ � ’uðtÞsin t� uðtÞcos tþ ’vðtÞcos t� vðtÞsin t:
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Substituting the expressions about .y; ’y and y into Eq. (4), the following equation is found:

ðM ’v � Mu þ Cv þ KuÞcos t� ðM ’u þ Mv þ Cu � KvÞsin t ¼ f ðu; v; tÞ: ð8Þ

Then, Eq. (7) is multiplied by M cos t; Eq. (8) is multiplied by �sin t and the two equations
are added. The resulting equation is then integrated from 0 to 2p by assuming that u and v

remain constant. The final result is

M ’u ¼
1

2
ðK � MÞv �

1

2

x1u1 þ Q1

mx2u2 þ Q2

 !
: ð9Þ

Similarly, Eq. (7) is multiplied by M sin t; Eq. (8) is multiplied by cos t and the two equations are
added. Then, integrating the resulting equation from 0 to 2p; we obtain

M ’v ¼
1

2
ðM � KÞu �

1

2

x1v1 þ Q3 þ l

mx2v2 þ Q4 þ l

 !
; ð10Þ

where

Q1 ¼ 1
4
ðb1u1 � 3a1v1Þðu2

1 þ v21Þ; Q2 ¼ 1
4
ðmb2u2 � 3ma2v2Þðu22 þ v22Þ;

Q3 ¼ 1
4
ð3a1u1 þ b1v1Þðu

2
1 þ v21Þ; Q4 ¼ 1

4
ð3ma2u2 þ mb2v2Þðu

2
2 þ v22Þ:

Eqs. (9) and (10) represent a set of first order, ordinary differential equations. For the periodic
steady state vibration, the conditions are given as

’u ¼ ’v ¼ 0: ð11Þ

Substituting conditions (11) into Eqs. (9) and (10), a set of four coupled non-linear algebraic
equations for u1; v1; u2 and v2 is obtained:

x1u1 � ðZ1 � m� 1Þv1 þ mv2 þ Q1 ¼ 0;

mx2u2 þ mv1 � ðmZ2 � mÞv2 þ Q2 ¼ 0;

ð1þ m� Z1Þu1 þ mu2 � x1v1 � Q3 � l ¼ 0;

mu1 þ ðm� mZ2Þu1 � mx2v2 � Q4 � l ¼ 0: ð12Þ

3. Stability analysis

In order to determine the stability of a periodic solution, a small perturbation of the solutions
of Eq. (12) are introduced and they written as

u1ðtÞ ¼ u10 þ u11ðtÞ; v1ðtÞ ¼ v10 þ v11ðtÞ;

u2ðtÞ ¼ u20 þ u21ðtÞ; v2ðtÞ ¼ v20 þ v21ðtÞ; ð13Þ
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where u11ðtÞ; v11ðtÞ; u21ðtÞ and v21ðtÞ are small perturbations , u10; v10; u20 and v20 are the steady
state solutions of Eq. (12). Substituting Eq. (13) into Eqs. (9) and (10), expanding the resulting
equations in Fourier series with respect to u11; v11; u21 and v21; using conditions (11) and keeping
the linear parts, the perturbed equations are obtained:

½M�
’u11

’u21

" #
¼

1

2
½K � M�

v11

v21

" #
�

1

2

x1u11 þ
@Q1

@u11
u11 þ

@Q1

@v11
v11

mx2u21 þ
@Q2

@u21
u21 þ

@Q2

@v21
v21

2
664

3
775;

½M�
’v11

’v21

" #
¼

1

2
½M � K �

u11

u21

" #
�

1

2

x1v11 þ
@Q3

@u11
u11 þ

@Q3

@v11
v11

mx2v21 þ
@Q4

@u21
u21 þ

@Q4

@v21
v21

2
664

3
775: ð14Þ

By judging the eigenvalues of the coefficient determinant of Eq. (14), the stability of periodic
solutions can be determined. If the real part of all the eigenvalues is negative, then the periodic
solution is stable; otherwise, it is unstable. If a real eigenvalue changes sign, it is a saddle-node-
type bifurcation and may result in jump phenomena. If there exists a pair of complex conjugate
eigenvalues whose real part changes sign, it is termed Hopf bifurcation and results in
quasiperiodic vibrations.

4. Numerical results and discussion

In all the numerical calculations, the non-dimensionless exciting frequency O is taken as a
bifurcation parameter. r1 and r2 denote the response amplitudes of the main mass and absorber,
respectively, namely

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ v21

q
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
2 þ v22

q
:

In order to validate the result right in this paper, the parameters taken are m ¼ 0:05; d ¼ 1;
a1 ¼ 0; a2 ¼ 0:01; b1 ¼ b2 ¼ 0; %l ¼ 0:1; z1 ¼ z2 ¼ 0:01; and we let l ¼ 0 in the second equation of
Eq. (10). The solid curves denote the stable solutions and the dotted curves denote the unstable
solutions in Figs. 2–6. Fig. 2 shows the steady state response–frequency curve of the main mass.
The two unstable branches shown in Fig. 2 are generated through saddle-node bifurcations. The
results are consistent with those in Ref. [8]. Meanwhile, in order to evaluate the effectiveness of the
cubic non-linear damping on the amplitude reduction of the system, we take b2 ¼ 0:003 and the
other parameters are taken as above. From the curves, it can be seen that the non-linear damping
has an obvious effect on the amplitude reduction.
Then, several groups of various parameters are tried out to discuss the vibration property of the

system and the selections of the relative parameters are taken by virtue of Ref. [5]. The steady state
responses of the main mass are shown in Figs. 3 and 4 considering different non-linear spring
coefficients. In Fig. 3, with increase in the non-linear spring stiffness %a2; the vibration amplitude
reduces and the critical bifurcation parameter increases. It can be concluded that increasing the
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non-linear spring stiffness %a2 can reduce the amplitude of the main mass and obtain the effect of
reduction of the vibration amplitude. But from Fig. 4, the amplification of the non-linear spring
stiffness %a1 makes the hardening degree of the system increase. When Oo1; the increase of %a1 can
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Fig. 2. Steady state response of the main mass (m ¼ 0:05; d ¼ 1; a1 ¼ 0; a2 ¼ 0:01; b1 ¼ 0; %l ¼ 0:1; z1 ¼ z2 ¼ 0:01).
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Fig. 3. Steady state response of the main mass (m ¼ 0:1; d ¼ 0:95; %a1 ¼ 0; %b1 ¼ %b2 ¼ 0; %l ¼ 1; z1 ¼ z2 ¼ 0:1).
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Fig. 4. Steady state response of the main mass (m ¼ 0:1; d ¼ 1; %a2 ¼ 0:02; %b1 ¼ %b2 ¼ 0; %l ¼ 1; z1 ¼ 0:05; z2 ¼ 0:1).
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reduce the vibration amplitude. However, when 1oOo1:6; the increase of %a1 does not obtain
reduction of the amplitude. When O > 1:6; the value of %a1 has little effect on the vibration of the
system. It is observed that increase of %a1 can result in reduction of the amplitude only at Oo1: The
unstable branches are also generated through saddle-node bifurcations.
Figs. 5 and 6 show the steady state response of the main mass considering different non-linear

damper. From Fig. 5, increase in non-linear damper %b2 results in the reduction of the vibration
amplitude in the range of Oo1:4; while its effect is relatively evident when O > 1:4: The vibration
amplitude reduces and the range of the bifurcation parameter becomes smaller both with increase
in %b2: When %b2o0; another unstable branch is generated through saddle-node bifurcations. It is
obvious that the increasing of %b2 obtains a significant effect in the range O > 1:4: However, from
Fig. 6, the increasing of non-linear damper %b1 has little influence on the vibration amplitude of the
system. Therefore, it can be concluded that the purpose of reduction of the vibration amplitude is
arrived at with difficulty by increasing %b1:
In the following section, numerical simulation is applied for Eq. (3). The non-dimensional

frequency O is also taken as the bifurcation parameter. The other parameters of the system
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are taken as

m ¼ 0:1; d ¼ 0:95; %a1 ¼ 0:01; %a2 ¼ 0:002; %b1 ¼ 0; %b2 ¼ 0:0001; %l ¼ 1; z1 ¼ z2 ¼ 0:01:

Fig. 7 shows the bifurcation diagram of the main mass by using O as the control parameter. In this
paper, we are mainly concerned with tracing the bifurcation diagram and identifying the periodic
motions, quasiperiodic motions or chaotic motions.
From Fig. 7, the motion of the system is a periodic motion before about Oo1:3: When O ¼

1:2941; the system enters the chaotic motions. The relative Poincar!e map and amplitude–
frequency spectrum are shown in Fig. 8. It shows that the Poincar!e map has the appearance of a
strange attractor typical of chaos and the spectrum is a continuous curve. In Fig. 9, the Poincar!e
maps for the system are shown for the different exciting frequencies. At O ¼ 1:322 (Fig. 9a), there
occurs a closed curve among a crowd of points, which shows the system will move to
quasiperiodic motion. At O ¼ 1:325 (Fig. 9b), the system exhibits a quasiperiodic response. With
the increase of the exciting frequency, the torus breaks up into six small sections and the system
turns into a period 6 response at O ¼ 1:3294 (Fig. 9c). The Poincar!e map has six points. Then, the
six points generally expand and they are finally united into a closed curve at O ¼ 1:335 (Fig. 9d).
A single closed curve bifurcates into two nested closed curves at O ¼ 1:34 (Fig. 9e). At O ¼ 1:59
(Fig. 9f), the system moves into period 1 response by an inverse Hopf bifurcation, then by a Hopf
bifurcation resulting in a quasiperiodic response (Fig. 9g). After O ¼ 1:605 (Fig. 9h), the system
enters into a periodic motion.
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Fig. 8. O ¼ 1:2941: (a) Poincar!e map; (b) amplitude–frequency spectrum.

Fig. 7. Bifurcation diagram of the main mass by using O as the control parameter:
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5. Conclusion

The model, in this paper, is a two-degree-of-freedom vibration system with non-linear damping
and non-linear spring. The study presents firstly the stability and bifurcation of the system.
Results show the effect of reduction of the vibration amplitude can be obtained by properly
selecting the values of non-linear dampers, non-linear spring stiffness and the range of exciting
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Fig. 9. Poincar!e maps of the main mass for different exciting frequencies: (a) O ¼ 1:322; (b) O ¼ 1:325; (c) O ¼ 1:3294;
(d) O ¼ 1:335; (e) O ¼ 1:34; (f) O ¼ 1:59; (g) O ¼ 1:595; and (h) O ¼ 1:605:
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frequency. When Oo1; increasing non-linear spring stiffness and non-linear damper both result in
reduction of the vibration amplitude. When O > 1; the changes of non-linear spring stiffness and
damper of the main mass do not reduce the vibration amplitude, but it can be realized adjusting
the non-linear spring stiffness and damper of the absorber. Finally, numerical simulation is
applied to investigate the periodic motion, quasiperiodic motion and chaotic motion of the
system. The motion state of the system is transformed in a range of different exciting frequencies.
The system exhibits complex motions.
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